An Interesting Exercise in Measure Theory
The solution to Exercise 2A, Problem 8 and 9, in Measure, Integration & Real Analysis.
The LaTeX version of this blog post is available here. Or you can simply download the .tex and .pdf files from here. The content is the same, but the LaTeX version has a more formal typesetting, which I personally prefer (quite much).
This article is the solution (sketch) to Exercise 2A, Problem 8 and 9, in Sheldon Axler’s textbook Measure, Integration & Real Analysis. Both problems look quite intuitive, but they are not that easy to prove. The solutions below are sometimes sketchy, in order to emphasize the general idea behind.
Notations
In this article, we adopt the following notations.
$\ell(\cdot)$ denotes the length of an open interval. (The interval must be open!)
$\abs A$ denotes the (Lebesgue) outer measure of $A\subseteq\R$. It is defined as
Exercise 2A, Problem 8
For any $A\subseteq\R$ and any bounded open interval $I$,
\[\abs A=\abs{A\cap I}+\abs{A\cap I^c}.\]$A=(A\cap I)\cup(A\cap I^c)\implies\text{LHS}\le\text{RHS}$. Assume that $\text{LHS}<\text{RHS}$, i.e., $\exists\{I_k\}$ s.t.
\[A\subseteq\bigcup_{k=1}^\infty I_k,\quad \sum_{k=1}^\infty\ell(I_k)<\abs{A\cap I}+\abs{A\cap I^c}.\]Split each $I_k$ into one open interval inside $I$, collected in a new $\{I_k\}$, and two open intervals outside $I$, collected in $\{J_k\}$. Then \begin{equation}\label{eq1} A\backslash\{a,b\}\subseteq\bra{\bigcup_{k=1}^\infty I_k}\cup\bra{\bigcup_{k=1}^\infty J_k},\quad I_k\subseteq I,J_k\subseteq I^c. \end{equation} \begin{equation}\label{eq2} \sum_{k=1}^\infty\ell(I_k)+\sum_{k=1}^\infty\ell(J_k)<\abs{A\cap I}+\abs{A\cap I^c}. \end{equation} Add $(a-\varepsilon,a+\varepsilon)$ and $(b-\varepsilon,b+\varepsilon)$ to $\{J_k\}$. (\ref{eq1}) becomes \begin{equation}\label{eq3} A\subseteq\bra{\bigcup_{k=1}^\infty I_k}\cup\bra{\bigcup_{k=1}^\infty J_k}, \end{equation} and $\varepsilon$ is small enough s.t. (\ref{eq2}) still holds.
Analyze (\ref{eq1}) and (\ref{eq3}). We have
\[A\cap I\subseteq\bigcup_{k=1}^\infty I_k,\quad A\cap I^c\subseteq\bigcup_{k=1}^\infty J_k,\]contradicting (\ref{eq2}).
Exercise 2A, Problem 9
Prove that for all $A\subseteq\R$,
\[\abs A=\lim_{t\to\infty}\abs{A\cap(-t,t)}.\]The case where $\abs A=0$ is trivial.
Now suppose $\abs A\in\R^+$. Let $\{I_k\}$ be s.t. \begin{equation}\label{eq4} A\subseteq\bigcup_{k=1}^\infty I_k, \end{equation} where each $I_k$ is bounded and
\[\abs A\le\sum_{k=1}^\infty\ell(I_k)<\abs A+\varepsilon.\]Then $\exists n$ s.t.
\[\sum_{k=1}^n\ell(I_k)>\abs A-\varepsilon.\]$\exists t$ s.t. $\bigcup_{k=1}^nI_k\subseteq(-t,t)$. Now by (\ref{eq4}), we have
\[A\cap(-t,t)^c\subseteq\bigcup_{k=n+1}^\infty I_k.\] \[\abs{A\cap(-t,t)^c}\le\sum_{k=n+1}^\infty\ell(I_k)<(\abs A+\varepsilon)-(\abs A-\varepsilon)=2\varepsilon.\]Now suppose $\abs A=\infty$. WLOG, suppose $A\cap\Z=\emptyset$; otherwise consider $A\backslash\Z$ instead of $A$. By repeatedly using the lemma, we can prove that
\[\abs A=\sum_{n\in\Z}\abs{A\cap(n,n+1)}.\]Because $\abs A=\infty$, $\exists m$ s.t.
\[\sum_{n=-m}^m\abs{A\cap(n,n+1)}>C.\]Hence
\[\abs{A\cap(-m,m)}=\sum_{n=-m}^{m-1}\abs{A\cap(n,n+1)}>C.\]Here the first equality follows from repeatedly using the lemma.