
Lemma. For any A ⊆ R and any bounded open interval I,

|A| = |A ∩ I|+ |A ∩ Ic| .

Proof. A = (A ∩ I) ∪ (A ∩ Ic) =⇒ LHS ≤ RHS. Assume that LHS < RHS, i.e., ∃{Ik} s.t.

A ⊆
∞⋃
k=1

Ik,

∞∑
k=1

ℓ(Ik) < |A ∩ I|+ |A ∩ Ic| .

Split each Ik into one open interval inside I, collected in a new {Ik}, and two open intervals
outside I, collected in {Jk}. Then

A\{a, b} ⊆

( ∞⋃
k=1

Ik

)
∪

( ∞⋃
k=1

Jk

)
, Ik ⊆ I, Jk ⊆ Ic. (1)

∞∑
k=1

ℓ(Ik) +
∞∑
k=1

ℓ(Jk) < |A ∩ I|+ |A ∩ Ic| . (2)

Add (a− ε, a+ ε) and (b− ε, b+ ε) to {Jk}. (1) becomes

A ⊆

( ∞⋃
k=1

Ik

)
∪

( ∞⋃
k=1

Jk

)
, (3)

and ε is small enough s.t. (2) still holds.
Analyze (1) and (3). We have

A ∩ I ⊆
∞⋃
k=1

Ik, A ∩ Ic ⊆
∞⋃
k=1

Jk,

contradicting (2).

Problem. Prove that for all A ⊆ R,

|A| = lim
t→∞

|A ∩ (−t, t)| .

Proof. The case where |A| = 0 is trivial.
Now suppose |A| ∈ R+. Let {Ik} be s.t.

A ⊆
∞⋃
k=1

Ik, (4)

where each Ik is bounded and

|A| ≤
∞∑
k=1

ℓ(Ik) < |A|+ ε.

Then ∃n s.t.
n∑

k=1

ℓ(Ik) > |A| − ε.

∃t s.t.
⋃n

k=1 Ik ⊆ (−t, t). Now by (4), we have

A ∩ (−t, t)c ⊆
∞⋃

k=n+1

Ik.



|A ∩ (−t, t)c| ≤
∞∑

k=n+1

ℓ(Ik) < (|A|+ ε)− (|A| − ε) = 2ε.

Now suppose |A| = ∞. WLOG, suppose A ∩ Z = ∅; otherwise consider A\Z instead of A.
By repeatedly using the lemma, we can prove that

|A| =
∑
n∈Z

|A ∩ (n, n+ 1)| .

Because |A| = ∞, ∃m s.t.
m∑

n=−m

|A ∩ (n, n+ 1)| > C.

Hence

|A ∩ (−m,m)| =
m−1∑
n=−m

|A ∩ (n, n+ 1)| > C.

Here the first equality follows from repeatedly using the lemma.
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