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Abstract

Building upon the definition of a tensor as a multilinear map, this article delves into the
rich algebraic structure of the space of tensors. We will formalize the primary operations of
tensor algebra: the outer product, which combines tensors to create those of higher rank,
and contraction, which reduces rank. Each operation will be introduced from a coordinate-
free perspective to emphasize its geometric nature, followed by its practical implementation
in a component-based framework. We conclude with a discussion of the metric tensor, which
endows the algebra with a means to relate covariant and contravariant quantities.

1 Recap: The Landscape of Tensors

Let V be a finite-dimensional vector space over a field F. We have established that a tensor of
type (p, q) is a multilinear map from (V∗)p×Vq to F. The set of all such tensors forms a vector
space, which we denote T p

q (V).
The foundation of tensor algebra lies in defining meaningful operations on and between these

tensor spaces. For any fixed (p, q), the space T p
q (V) is itself a vector space. This means we can

add two tensors of the same type and multiply a tensor by a scalar:

• Addition: For S, T ∈ T p
q (V), (S + T )(ω1, . . . , vq) := S(ω1, . . . , vq) + T (ω1, . . . , vq).

• Scalar Multiplication: For c ∈ F, (cT )(ω1, . . . , vq) := c · T (ω1, . . . , vq).

These operations are fundamental but limited, as they do not allow us to interact with tensors
of different types. The power of tensor algebra comes from two additional operations: the outer
product and contraction.

2 The Outer Product: Building Higher-Rank Tensors

The outer product, denoted by ⊗, is the primary multiplicative operation in tensor algebra. It
allows us to combine two tensors to create a new tensor of a higher rank.

Definition 2.1 (Outer Product). Let S ∈ T p
q (V) and T ∈ T r

s (V). Their outer product,
denoted S⊗T , is a tensor of type (p+ r, q+ s) defined by its action on p+ r covectors and q+ s
vectors:

(S ⊗ T )(ω1, . . . , ωp+r, v1, . . . , vq+s) := S(ω1, . . . , ωp, v1, . . . , vq)

× T (ωp+1, . . . , ωp+r, vq+1, . . . , vq+s)

The result is the product of the scalars generated by S and T acting on their respective arguments.

This definition is inherently coordinate-free. The outer product inherits the multilinearity
of its constituent tensors. It is also associative and distributive over tensor addition, making
the collection of all tensors a graded algebra.
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2.1 Outer Product in Components

The elegance of the outer product becomes apparent in a component representation. Let {ei}
be a basis for V and {ϵj} be its dual basis. Let S and T have components

S
i1...ip
j1...jq

and T k1...kr
l1...ls

The components of the new tensor U = S⊗T ∈ T p+r
q+s (V) are simply the product of the individual

components. The indices are concatenated:

U
i1...ipk1...kr
j1...jql1...ls

= S
i1...ip
j1...jq

T k1...kr
l1...ls

For example, the outer product of two vectors u = uiei ∈ T 1
0 (V) and v = vjej ∈ T 1

0 (V) is a
type-(2,0) tensor u⊗ v with components (u⊗ v)ij = uivj .

3 Contraction: Reducing Tensor Rank

Contraction is a uniquely tensorial operation that reduces the rank of a tensor. It “pairs” a
contravariant slot (an argument from V) with a covariant slot (an argument from V∗) and sums
over the result.

Definition 3.1 (Contraction). Let T ∈ T p
q (V) with p, q ≥ 1. The contraction of T on the

k-th contravariant index and the l-th covariant index (where 1 ≤ k ≤ p, 1 ≤ l ≤ q) is a tensor
Ck
l (T ) ∈ T p−1

q−1 (V). Let {ei} be any basis for V and {ϵi} be its dual basis. The action of the

contracted tensor Ck
l (T ) is defined as:

(Ck
l (T ))(ω1, . . . , ωp−1, v1, . . . , vq−1)

:=

dim(V)∑
i=1

T (ω1, . . . , ωk−1, ϵ
i, ωk, . . . , ωp−1,

v1, . . . , vl−1, ei, vl, . . . , vq−1)

where the basis covector ϵi is inserted into the k-th contravariant slot of T and the basis vector
ei is inserted into the l-th covariant slot.

Theorem 3.1. The definition of contraction is independent of the choice of basis.

Proof Sketch. Let {ēj} be another basis with ēj = Λi
jei. Then the dual basis transforms as

ϵ̄j = (Λ−1)jkϵ
k. Substituting these into the sum, we get∑

j

T (. . . , ϵ̄j , . . . , ēj , . . . ) =
∑
j

T (. . . , (Λ−1)jkϵ
k, . . . ,Λi

jei, . . . )

By multilinearity of T , we can pull out the transformation matrices:∑
j

(Λ−1)jkΛ
i
j

∑
i,k

T (. . . , ϵk, . . . , ei, . . . ) =
∑
i,k

δikT (. . . , ϵ
k, . . . , ei, . . . )

Since
∑

j(Λ
−1)jkΛ

i
j = δik (the Kronecker delta), the sum reduces to

∑
i T (. . . , ϵ

i, . . . , ei, . . . ),
proving the result is basis-independent.
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3.1 Contraction in Components

The coordinate-free definition, while rigorous, is cumbersome. In components, contraction is
beautifully simple: it corresponds to setting an upper index equal to a lower index and summing
over it, per the Einstein summation convention.

Let T have components T
i1...ik...ip
j1...jl...jq

. The components of the contracted tensor S = Ck
l (T )

are:
S
i1...ik−1ik+1...ip
j1...jl−1jl+1...jq

= T
i1...m...ip
j1...m...jq

where the index m replaces both ik and jl and is summed over from 1 to dim(V).

Example: The Trace. The most famous example of contraction is the trace of a linear
operator. An operator A ∈ L(V) is a tensor in T 1

1 (V). Its contraction C1
1 (A) is a tensor in

T 0
0 (V), which is a scalar. In components, this is:

Tr(A) = Ai
i = A1

1 +A2
2 + · · ·+An

n

4 The Metric Tensor and Index Manipulation

Tensor algebra becomes particularly powerful in vector spaces equipped with additional struc-
ture, such as an inner product.

Definition 4.1 (Metric Tensor). A metric tensor g on V is a type-(0,2) tensor that is:

1. Symmetric: g(u, v) = g(v, u) for all u, v ∈ V.

2. Non-degenerate: If g(u, v) = 0 for all v ∈ V, then u = 0.

A metric tensor is simply a choice of an inner product for V.

The non-degeneracy of g guarantees that it establishes a canonical isomorphism between
the vector space V and its dual V∗. This is often called the musical isomorphism.

• The flat map ♭ : V → V∗ sends a vector v to a covector v♭. This covector is defined by its
action on any vector u:

v♭(u) := g(v, u)

• The sharp map ♯ : V∗ → V is the inverse map.

In components, if g has components gij = g(ei, ej), the flat map corresponds to lowering
an index:

vj = gjiv
i

The inverse metric tensor g−1, with components gij satisfying gikgkj = δij , is used to raise an
index:

vi = gijvj

The existence of a metric allows us to freely convert between contravariant and covariant indices.
This simplifies many formulas in physics and differential geometry, as we can place indices in
the vertical position that is most convenient. For instance, the inner product of two vectors u
and v can be written in four equivalent ways:

g(u, v) = giju
ivj = ujv

j = uivi = gijuivj
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5 Conclusion

Tensor algebra provides a complete and consistent framework for manipulating multilinear ob-
jects. The operations of addition, scalar multiplication, outer product, and contraction form a
rich structure. The outer product allows for the construction of complexity by increasing tensor
rank, while contraction allows for the extraction of simpler, invariant quantities (often scalars)
by reducing rank. When supplemented with a metric tensor, the algebra gains a powerful tool
for relating vectors to their duals, unifying the concepts of contravariance and covariance. This
algebraic machinery is the essential prerequisite for moving on to tensor analysis, where these
objects are allowed to vary smoothly over a space, forming the language of modern geometry
and physics.
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