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Abstract

This article explores the rich internal structure of tensor spaces by examining symmetry
properties. We introduce the fundamental concepts of symmetric and antisymmetric tensors,
leading to the construction of two crucial algebraic structures: the symmetric algebra and
the exterior algebra. The latter, with its associated wedge product, forms the foundation for
the theory of differential forms. By developing this purely algebraic framework first, we set
the stage for a deeper understanding of the metric tensor as an essential tool that endows
this algebra with geometric meaning.

1 Introduction: Decomposing Tensor Spaces

We have established that the set of all tensors over a vector space V forms a graded algebra
under the outer product. However, the spaces T p

q (V) themselves possess a great deal of internal
structure. A powerful way to analyze this structure is to study how tensors behave under the
permutation of their arguments. This leads to a natural decomposition of tensor spaces into
subspaces of tensors with specific symmetries. For simplicity, we will focus our attention on
purely covariant tensors in T 0

k (V), as the generalization is straightforward.

2 Symmetric and Antisymmetric Tensors

Let Sk be the symmetric group of permutations of {1, 2, . . . , k}. For any permutation σ ∈ Sk,
we can define its action on a tensor T ∈ T 0

k (V) by permuting its vector arguments.

Definition 2.1. Let T ∈ T 0
k (V) and σ ∈ Sk. The action of σ on T produces a new tensor

σT ∈ T 0
k (V) defined by:

(σT )(v1, . . . , vk) := T (vσ(1), . . . , vσ(k))

This action allows us to define the key symmetry classes.

Definition 2.2. Let T ∈ T 0
k (V).

1. T is symmetric if σT = T for all σ ∈ Sk. This is equivalent to saying that T is unchanged
by the swapping of any two arguments:

T (. . . , u, . . . , v, . . . ) = T (. . . , v, . . . , u, . . . )

2. T is antisymmetric (or alternating) if σT = sgn(σ)T for all σ ∈ Sk, where sgn(σ) is
the sign of the permutation. This is equivalent to saying that T changes sign upon the
swapping of any two arguments:

T (. . . , u, . . . , v, . . . ) = −T (. . . , v, . . . , u, . . . )

The space of symmetric k-tensors is denoted Sk(V∗), and the space of alternating k-tensors is
denoted Λk(V∗).

Remark 2.1. A direct consequence of the definition is that if any two arguments of an alter-
nating tensor are identical, the result is zero: T (. . . , v, . . . , v, . . . ) = 0.
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2.1 The Symmetrization and Alternation Operators

We can create (anti)symmetric tensors from arbitrary ones using projection operators.

Definition 2.3. The symmetrization operator Sym : T 0
k (V) → Sk(V∗) and the alternation

operator Alt : T 0
k (V) → Λk(V∗) are defined as:

Sym(T ) :=
1

k!

∑
σ∈Sk

σT

Alt(T ) :=
1

k!

∑
σ∈Sk

sgn(σ)σT

These operators act as projections onto the respective subspaces.

In Components. If a tensor T has components Ti1...ik , then:

• T is symmetric if Tiσ(1)...iσ(k)
= Ti1...ik for any permutation σ.

• T is antisymmetric if Tiσ(1)...iσ(k)
= sgn(σ)Ti1...ik . For example, Aij = −Aji.

The components of the symmetrized tensor are often denoted with parentheses, T(i1...ik), and
the alternated tensor with square brackets, T[i1...ik].

3 The Exterior Algebra and the Wedge Product

The space of alternating tensors, Λk(V∗), also known as the space of k-covectors or k-forms,
possesses a particularly beautiful and important algebraic structure. We can define a new
product operation that preserves the property of alternation.

Definition 3.1 (Wedge Product). Let α ∈ Λk(V∗) and β ∈ Λl(V∗). Their wedge product (or
exterior product), denoted α ∧ β, is an element of Λk+l(V∗) defined as:

α ∧ β :=
(k + l)!

k!l!
Alt(α⊗ β)

The normalization factor is chosen to simplify formulas for basis vectors. The wedge product
has the following fundamental properties:

1. Bilinearity: (cα1 + α2) ∧ β = c(α1 ∧ β) + (α2 ∧ β).

2. Associativity: (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

3. Graded Anticommutativity: α ∧ β = (−1)klβ ∧ α.

This last property is crucial. It implies that the wedge product of a k-form with itself is zero if
k is odd.

The direct sum of these spaces, Λ(V∗) =
⊕dim(V)

k=0 Λk(V∗), equipped with the wedge product,
forms a graded algebra called the exterior algebra of V∗.

3.1 The Wedge Product in Components

While the abstract definition is powerful, the component form is highly intuitive. Let {ϵi} be a
basis for V∗.
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Example 3.1. Let α = αiϵ
i and β = βjϵ

j be two 1-forms. Their wedge product is:

α ∧ β = (αiϵ
i) ∧ (βjϵ

j) = αiβj(ϵ
i ∧ ϵj)

=
1

2
αiβj(ϵ

i ⊗ ϵj − ϵj ⊗ ϵi)

=
∑
i<j

(αiβj − αjβi)(ϵ
i ∧ ϵj)

The components of this 2-form are (α ∧ β)ij = αiβj − αjβi.

A basis for Λk(V∗) is given by the set {ϵi1 ∧ · · · ∧ ϵik} for all ordered multi-indices 1 ≤ i1 <

i2 < · · · < ik ≤ dim(V). This implies that dim(Λk(V∗)) =
(dim(V)

k

)
.

4 Revisiting the Metric: From Algebra to Geometry

Up to this point, our entire discussion of symmetry and the exterior algebra has been purely
algebraic, requiring no additional structure on V. This is where the metric tensor enters, not
as an algebraic necessity, but as a geometric tool. A metric tensor g (an inner product) on V
allows us to answer geometric questions.

Motivation:

• How long is a vector? We need a metric: ∥v∥2 = g(v, v).

• What is the angle between two vectors? We need a metric: cos θ = g(u, v)/(∥u∥∥v∥).

• What is the “volume” of a parallelepiped spanned by k vectors? This requires a metric.

• Is there a natural way to relate the space of k-forms Λk(V∗) to the space of (n− k)-forms
Λn−k(V∗)?

The last two questions are answered by using the metric to enrich the exterior algebra. A
metric g on V induces a canonical inner product on each space Λk(V∗). This allows us to define
orthonormal bases of k-forms and, crucially, to define a unique, metric-dependent unit n-form
called the volume form, which corresponds to our intuitive notion of volume.

The existence of an inner product and a volume form then allows for the definition of the
Hodge star operator (⋆), a canonical isomorphism ⋆ : Λk(V∗) → Λn−k(V∗). This operator
is fundamental in geometry and physics (e.g., in Maxwell’s equations) and it cannot be defined
without a metric.

5 Conclusion

The space of tensors is not monolithic; it possesses a rich internal structure governed by symme-
tries. By isolating the symmetric and, more importantly, the antisymmetric tensors, we uncover
the exterior algebra—a powerful and elegant framework with its own unique product rule (∧).
This entire structure is built on the axioms of a vector space alone.

The metric tensor should now be seen in a new light. It is not just another type-(0,2)
tensor. It is a special tensor that we introduce to our vector space to endow it with a geometric
character. It serves as the bridge between the abstract, algebraic world of forms and the
concrete, geometric world of lengths, angles, volumes, and dualities. The subsequent study of
operators like the Hodge star will make this role explicit and demonstrate that much of what we
consider “geometry” is precisely the interplay between the exterior algebra and a metric tensor.
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