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Abstract

In linear algebra and its applications, the notation S ⊗ T for two linear operators S and
T can signify two distinct mathematical objects: a type-(2,2) tensor built from the outer
product of two type-(1,1) tensors, or a single linear operator on the tensor product space
V ⊗W. This article clarifies the relationship between these two concepts. We demonstrate
that while they reside in different vector spaces, a canonical isomorphism connects them, jus-
tifying the use of the same notation and revealing a deeper consistency within the formalism
of tensor algebra.

1 The Apparent Ambiguity

Let V and W be finite-dimensional vector spaces over a field F. Let S ∈ L(V) and T ∈ L(W) be
linear operators. The literature presents two common definitions for the object denoted S ⊗ T .

1.1 Definition 1: The Outer Product of Tensors

From the perspective of multilinear algebra, an operator S ∈ L(V) is identified with a tensor of
type (1,1) in T 1

1 (V). Specifically, S is the unique bilinear map

S : V∗ × V → F

defined by its action on a covector ω ∈ V∗ and a vector v ∈ V:

S(ω, v) := ω(S(v))

Similarly, T ∈ L(W) corresponds to a tensor in T 1
1 (W).

The outer product (or tensor product) of these two tensors is a new tensor, which we
shall temporarily denote by A, of type (2,2) on the pair of spaces (V,W). More formally,
A ∈ T 1

1 (V)⊗ T 1
1 (W). This object is a multilinear map

A : V∗ ×W∗ × V ×W → F

defined by its action on simple inputs:

A(ω, η, v, w) := S(ω, v)T (η, w) = ω(S(v))η(T (w))

In many texts, this object A is written as S ⊗ T .

Remark 1.1. If V = W, then S, T ∈ T 1
1 (V) and their outer product S ⊗ T is an element of

T 2
2 (V), a multilinear map (V∗)2 × V2 → F.
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1.2 Definition 2: The Tensor Product of Operators

Drawing from an exercise in Axler’s Linear Algebra Done Right, the tensor product of two
operators S ∈ L(V) and T ∈ L(W) is defined differently.

Definition 1.1 (Tensor Product of Operators). There exists a unique linear operator on the
tensor product space V ⊗W, which we shall temporarily denote by Φ, that satisfies

Φ(v ⊗ w) = S(v)⊗ T (w)

for all simple tensors v ⊗ w ∈ V ⊗W. This unique operator is denoted by S ⊗ T .

So, in this context, S ⊗ T is an element of L(V ⊗W).

The Core Question: We have two objects, both denoted S ⊗ T :

1. An object A ∈ T 1
1 (V)⊗ T 1

1 (W), a multilinear map.

2. An operator Φ ∈ L(V ⊗W).

Are these the same? If not, how are they related?

2 The Canonical Isomorphism

The resolution lies in a canonical (i.e., basis-independent) isomorphism between the spaces
where these two objects live. We know that the space of linear operators on a vector space X ,
L(X ), is naturally isomorphic to the space of type-(1,1) tensors on X , T 1

1 (X ). Therefore, our
operator Φ lives in a space isomorphic to T 1

1 (V ⊗W).
The key is to show that there is a natural isomorphism between the space where A lives and

the space where Φ lives.

Proposition 2.1. There is a canonical isomorphism of vector spaces:

Ψ : T 1
1 (V)⊗ T 1

1 (W)
∼=−→ T 1

1 (V ⊗W)

Sketch of Proof. We use the fundamental isomorphisms of tensor algebra. First, recall the
identification of tensor spaces with tensor products of the underlying spaces and their duals:

T 1
1 (V) ∼= V ⊗ V∗

T 1
1 (W) ∼= W ⊗W∗

T 1
1 (V ⊗W) ∼= (V ⊗W)⊗ (V ⊗W)∗

Next, we use the canonical isomorphism for the dual of a tensor product space:

(V ⊗W)∗ ∼= V∗ ⊗W∗

An element ω⊗ η ∈ V∗⊗W∗ acts on an element v⊗w ∈ V ⊗W by (ω⊗ η)(v⊗w) := ω(v)η(w).
Now, we can construct the chain of isomorphisms.

T 1
1 (V)⊗ T 1

1 (W) ∼= (V ⊗ V∗)⊗ (W ⊗W∗)
∼= V ⊗W ⊗ V∗ ⊗W∗ (rearranging terms)
∼= (V ⊗W)⊗ (V∗ ⊗W∗)
∼= (V ⊗W)⊗ (V ⊗W)∗ (using the dual space isomorphism)

∼= T 1
1 (V ⊗W)

Since all isomorphisms used are canonical, the resulting isomorphism between the start and end
spaces is also canonical.
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3 Verifying the Correspondence

The existence of an isomorphism is good, but we must show that it maps our specific tensor
A (from Def. 1) to our specific operator Φ (from Def. 2). We will do this by showing they
represent the same underlying mapping when we interpret Φ as a tensor.

Let’s take the operator Φ = S ⊗ T ∈ L(V ⊗ W) and view it as a type-(1,1) tensor on the
space V ⊗W. This means Φ is a bilinear map

Φ : (V ⊗W)∗ × (V ⊗W) → F

defined by Φ(α, z) := α(Φ(z)) for α ∈ (V ⊗W)∗ and z ∈ V ⊗W.
To check if this corresponds to the tensor A from Definition 1, we evaluate it on simple

(elementary) inputs. Let α = ω ⊗ η ∈ V∗ ⊗W∗ ∼= (V ⊗W)∗ and let z = v ⊗ w ∈ V ⊗W.

Φ(ω ⊗ η, v ⊗ w) = (ω ⊗ η)(Φ(v ⊗ w)) (by definition of Φ as a tensor)

= (ω ⊗ η)(S(v)⊗ T (w)) (by definition of the operator Φ)

= ω(S(v))η(T (w)) (by definition of action of V∗ ⊗W∗)

Now, let’s recall the definition of our other object, the tensor A = S ⊗ T from Definition 1. It
is a multilinear map whose action is:

A(ω, η, v, w) = ω(S(v))η(T (w))

The results are identical. The evaluation of the operator Φ (interpreted as a (1,1)-tensor on
V ⊗W) on a pair of simple tensors (ω⊗ η, v⊗w) yields the same scalar as the evaluation of the
tensor A on the collection of individual vectors and covectors (ω, η, v, w).

This demonstrates that the canonical isomorphism maps the object from Definition 1 to the
object from Definition 2.

4 Conclusion

The use of the notation S⊗T for both an outer product of tensors and an operator on a tensor
product space is not an abuse of notation. It is a deliberate and elegant identification of two
objects that are canonically equivalent.

• S ⊗ T ∈ T 1
1 (V)⊗ T 1

1 (W) is a multilinear map taking four arguments.

• S ⊗ T ∈ L(V ⊗W) is a linear map taking one argument from V ⊗W.

The isomorphism T 1
1 (V) ⊗ T 1

1 (W) ∼= L(V ⊗ W) provides the precise dictionary for translat-
ing between these two viewpoints. This consistency is a hallmark of the power of the tensor
formalism, allowing for flexibility in perspective without mathematical contradiction.
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