An Introduction to Tensors for the Abstract-Minded

A Student of Linear Algebra

September 16, 2025

Abstract

This article provides an introduction to the concepts of tensors and tensor algebra, aimed
at an audience with a solid foundation in abstract linear algebra, such as that provided by
Axler’s “Linear Algebra Done Right”. We begin with the coordinate-free definition of a
tensor as a multilinear map, connect this to familiar objects like vectors and linear oper-
ators, and then introduce tensor products. Finally, we bridge this abstract view with the
component-based perspective common in physics and engineering by discussing transforma-
tion laws.

1 Introduction: Beyond “Multi-dimensional Arrays”

You may have heard a tensor described simply as a “multi-dimensional array of numbers”.
While this is how we often represent a tensor for computation, it misses the essence of what a
tensor 4s. A tensor is a geometric or algebraic object that exists independently of any coordinate
system. Its numerical components are merely a representation of that object with respect to a
chosen basis, much like a vector is an arrow in space, and its column of numbers (vq, ve, v3) is
just its representation in a particular basis.

Our approach will mirror the philosophy of LADR: define the object first by its intrinsic
properties (its “what”), and only then explore its representation in coordinates (its “how”).

2 Revisiting Familiar Concepts as Tensors

Let’s start by re-framing concepts you already know. Let V be a finite-dimensional vector space
over a field F' (typically F = R). Let V* be its dual space, the space of all linear functionals
(linear maps) from V to F.

e Scalars (Type (0,0) Tensors): An element of the field F' is a scalar. It takes zero
vectors and zero covectors and gives a number (itself). It is the simplest tensor.

e Vectors (Type (1,0) Tensors): An element v € V can be thought of as a linear map
that takes a covector w € V* and produces a scalar. This map is simply evaluation:
v(w) := w(v). From this perspective, a vector is a linear map V* — F. This identifies V
with its double dual, (V*)*, which is a natural isomorphism for finite-dimensional spaces.

e Covectors (Type (0,1) Tensors): An element w € V* is, by definition, a linear map
from V to F. It takes one vector and produces a scalar. This is our first non-trivial
example of a tensor.

e Linear Operators (Type (1,1) Tensors): A linear operator T € £(V,V) (a map from
V to V) can be viewed as an object that takes a covector w € V* and a vector v € V and
produces a scalar. We define this action as:

T(w,v) = w(T(v))
Notice that this map is linear in both w and v. This is the key idea.



3 The Formal Definition: Tensors as Multilinear Maps

The common thread in the examples above is multilinearity. This leads to our formal,
coordinate-free definition.

Definition. A tensor of type (or rank) (p,q) on a vector space V is a multilinear map T
that takes p covectors from V* and ¢ vectors from V and produces a scalar in F.

T: V% - - xV'xVx---xV = F

p times q times

The space of all such tensors is denoted 75 (V). The numbers p and g are called the contravariant
and covariant ranks, respectively.

Examples Revisited:
e A scalar is in T (V).

A vector v € V is in T3 (V).

A covector w € V* is in TY(V).

e A linear operator A:V — V is in T} (V).

A bilinear form (like an inner product) is a map B : V x V — F, which makes it a type
(0,2) tensor.

4 Building Tensors: The Tensor Product

How do we construct these multilinear maps? The fundamental tool is the tensor product,
denoted by ®. The tensor product of two vector spaces, V ® W, is a new, larger vector space.
Its key property is that it “linearizes” bilinear maps.

For our purposes, we can define it constructively. Let v € V and w € W. We can form a
new object called a simple tensor v ® w. A general element of V ® WV is a linear combination
of such simple tensors. The tensor product operation ® itself is bilinear:

(+12)Qw=v1 QW+ 1v2 QW
v® (W) + w2) =v@w + v ws
() @w=v® (cw) =clvew) forceF

If {e;}}; is a basis for V and {f;}7; is a basis for W, then the set {e; ® f;};2} ;_, forms a
basis for V @ W. This implies dim(V ® W) = dim(V) dim(W).
With this tool, we can identify the space of (p,q) tensors with a tensor product of vector

spaces:

TPV)2V®...0VeV'®...0 V*

p times q times

5 Tensors in Coordinates: The Physicist’s View

Now, let’s connect this abstract picture to the “multi-dimensional array” view. This requires
choosing a basis.
Let {e;}j; be a basis for V. Let {¢/}}_; be the corresponding dual basis for V*, defined

by the property ¢/ (e;) = 53 (the Kronecker delta).



Any vector v € V can be written as v = v'e;. (We now adopt the Einstein summation
convention: repeated upper and lower indices are summed over). The numbers v’ are the
components of v. Similarly, any covector w € V* can be written as w = wjej. The numbers w;
are its components.

Now consider a tensor T € Ty (V). We can find its components by feeding it the basis vectors
and covectors: o

T;;Z’ =T(e", ... €7 ej,...,¢ej5,)
This gives us a set of n”T? numbers, which can be arranged in a (p + ¢)-dimensional array. The

tensor 1" can be reconstructed from its components and the basis tensors:

T=T;"7 (€;,®..0e, @ ®...0 )

5.1 The All-Important Transformation Law

The statement “a tensor is an object whose components transform in a certain way” arises from
asking what happens to the components when we change the basis.

Let’s move from our old basis {e;} to a new basis {€;}. The relationship is given by a
change-of-basis matrix A:

- J_ .
er = Ae;
The inverse relationship is e; = (A’l);-”ém.
One can show that the components of a vector v = v'e; = v¥¢;, transform as:
o* = (A"H¥'  (Contravariant transformation)
And the components of a covector w = Wjej = (wy€® transform as:
wp = Ajw; (Covariant transformation)

This generalizes to any tensor T € T7 (V). Its components transform according to the rule:
=k1...k _ —1\k —1\k 7 7 21...0
Tll...lqp =AT) (A )Z;’ Ayl ..Al: Tﬂ]:
Physicists and engineers often take this transformation law as the definition of a tensor. For us,
it is a consequence of the more fundamental definition of a tensor as an invariant multilinear
map.

6 A Glimpse of Tensor Algebra and Analysis

With tensors defined, we can perform operations on them.

e Addition: Tensors of the same type (p,q) can be added component-wise (in a given
basis). This corresponds to the standard vector space addition in 77 (V).

e Outer Product: The tensor product can be used to combine tensors of different types.
If T eTH(V)and S € TT(V), their outer product T'® S is a tensor of type (p+r,q + s).
In components, this is simply:

il...p,k1...r _ il...p k;1...7”
(T ® S)jl,_,qu.,,s - 1}1...(] Sll...s

e Contraction: This is a crucial operation that reduces the rank of a tensor. It involves
“pairing” a contravariant (upper) index with a covariant (lower) index and summing over
them. For a type (1,1) tensor T, the contraction C(T) is:

CT)=T' =T +Ti+---+T"

This is precisely the trace of the linear operator corresponding to 7. Contraction is the
component representation of applying a covector slot to a vector slot.



Tensor Analysis (or tensor calculus) extends these ideas to manifolds (curved spaces).
Here, the vector space V becomes the tangent space at each point on the manifold. A tensor is
no longer a single object but a tensor field—a smooth assignment of a tensor to each point.
Operations like the covariant derivative are introduced to differentiate these fields in a way that
respects the geometry of the space. This is the mathematical language of General Relativity
and differential geometry.

7 Conclusion

A tensor is a fundamental mathematical object that generalizes scalars, vectors, and linear op-
erators. By defining it as a multilinear map, we capture its intrinsic, coordinate-independent
nature. This abstract viewpoint, familiar from modern linear algebra, clarifies that the compo-
nent representations and their transformation laws are consequences of this deeper structure.
Understanding tensors from this perspective provides a robust foundation for their application
in virtually every field of science and engineering, from continuum mechanics to quantum field
theory.
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