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Abstract

This article provides an introduction to the concepts of tensors and tensor algebra, aimed
at an audience with a solid foundation in abstract linear algebra, such as that provided by
Axler’s “Linear Algebra Done Right”. We begin with the coordinate-free definition of a
tensor as a multilinear map, connect this to familiar objects like vectors and linear oper-
ators, and then introduce tensor products. Finally, we bridge this abstract view with the
component-based perspective common in physics and engineering by discussing transforma-
tion laws.

1 Introduction: Beyond “Multi-dimensional Arrays”

You may have heard a tensor described simply as a “multi-dimensional array of numbers”.
While this is how we often represent a tensor for computation, it misses the essence of what a
tensor is. A tensor is a geometric or algebraic object that exists independently of any coordinate
system. Its numerical components are merely a representation of that object with respect to a
chosen basis, much like a vector is an arrow in space, and its column of numbers (v1, v2, v3) is
just its representation in a particular basis.

Our approach will mirror the philosophy of LADR: define the object first by its intrinsic
properties (its “what”), and only then explore its representation in coordinates (its “how”).

2 Revisiting Familiar Concepts as Tensors

Let’s start by re-framing concepts you already know. Let V be a finite-dimensional vector space
over a field F (typically F = R). Let V∗ be its dual space, the space of all linear functionals
(linear maps) from V to F .

• Scalars (Type (0,0) Tensors): An element of the field F is a scalar. It takes zero
vectors and zero covectors and gives a number (itself). It is the simplest tensor.

• Vectors (Type (1,0) Tensors): An element v ∈ V can be thought of as a linear map
that takes a covector ω ∈ V∗ and produces a scalar. This map is simply evaluation:
v(ω) := ω(v). From this perspective, a vector is a linear map V∗ → F . This identifies V
with its double dual, (V∗)∗, which is a natural isomorphism for finite-dimensional spaces.

• Covectors (Type (0,1) Tensors): An element ω ∈ V∗ is, by definition, a linear map
from V to F . It takes one vector and produces a scalar. This is our first non-trivial
example of a tensor.

• Linear Operators (Type (1,1) Tensors): A linear operator T ∈ L(V,V) (a map from
V to V) can be viewed as an object that takes a covector ω ∈ V∗ and a vector v ∈ V and
produces a scalar. We define this action as:

T (ω, v) := ω(T (v))

Notice that this map is linear in both ω and v. This is the key idea.
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3 The Formal Definition: Tensors as Multilinear Maps

The common thread in the examples above is multilinearity. This leads to our formal,
coordinate-free definition.

Definition. A tensor of type (or rank) (p, q) on a vector space V is a multilinear map T
that takes p covectors from V∗ and q vectors from V and produces a scalar in F .

T : V∗ × · · · × V∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

→ F

The space of all such tensors is denoted T p
q (V). The numbers p and q are called the contravariant

and covariant ranks, respectively.

Examples Revisited:

• A scalar is in T 0
0 (V).

• A vector v ∈ V is in T 1
0 (V).

• A covector ω ∈ V∗ is in T 0
1 (V).

• A linear operator A : V → V is in T 1
1 (V).

• A bilinear form (like an inner product) is a map B : V ×V → F , which makes it a type
(0, 2) tensor.

4 Building Tensors: The Tensor Product

How do we construct these multilinear maps? The fundamental tool is the tensor product,
denoted by ⊗. The tensor product of two vector spaces, V ⊗W, is a new, larger vector space.
Its key property is that it “linearizes” bilinear maps.

For our purposes, we can define it constructively. Let v ∈ V and w ∈ W. We can form a
new object called a simple tensor v⊗w. A general element of V ⊗W is a linear combination
of such simple tensors. The tensor product operation ⊗ itself is bilinear:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(cv)⊗ w = v ⊗ (cw) = c(v ⊗ w) for c ∈ F

If {ei}ni=1 is a basis for V and {fj}mj=1 is a basis for W, then the set {ei ⊗ fj}n,mi=1,j=1 forms a
basis for V ⊗W. This implies dim(V ⊗W) = dim(V) dim(W).

With this tool, we can identify the space of (p, q) tensors with a tensor product of vector
spaces:

T p
q (V) ∼= V ⊗ . . .⊗ V︸ ︷︷ ︸

p times

⊗V∗ ⊗ . . .⊗ V∗︸ ︷︷ ︸
q times

5 Tensors in Coordinates: The Physicist’s View

Now, let’s connect this abstract picture to the “multi-dimensional array” view. This requires
choosing a basis.

Let {ei}ni=1 be a basis for V. Let {ϵj}nj=1 be the corresponding dual basis for V∗, defined

by the property ϵj(ei) = δji (the Kronecker delta).
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Any vector v ∈ V can be written as v = viei. (We now adopt the Einstein summation
convention: repeated upper and lower indices are summed over). The numbers vi are the
components of v. Similarly, any covector ω ∈ V∗ can be written as ω = ωjϵ

j . The numbers ωj

are its components.
Now consider a tensor T ∈ T p

q (V). We can find its components by feeding it the basis vectors
and covectors:

T
i1...ip
j1...jq

:= T (ϵi1 , . . . , ϵip , ej1 , . . . , ejq)

This gives us a set of np+q numbers, which can be arranged in a (p+ q)-dimensional array. The
tensor T can be reconstructed from its components and the basis tensors:

T = T
i1...ip
j1...jq

(ei1 ⊗ . . .⊗ eip ⊗ ϵj1 ⊗ . . .⊗ ϵjq)

5.1 The All-Important Transformation Law

The statement “a tensor is an object whose components transform in a certain way” arises from
asking what happens to the components when we change the basis.

Let’s move from our old basis {ei} to a new basis {ēk}. The relationship is given by a
change-of-basis matrix Λ:

ēk = Λj
kej

The inverse relationship is ej = (Λ−1)mj ēm.

One can show that the components of a vector v = viei = v̄kēk transform as:

v̄k = (Λ−1)ki v
i (Contravariant transformation)

And the components of a covector ω = ωjϵ
j = ω̄k ϵ̄

k transform as:

ω̄k = Λj
kωj (Covariant transformation)

This generalizes to any tensor T ∈ T p
q (V). Its components transform according to the rule:

T̄
k1...kp
l1...lq

= (Λ−1)k1i1 . . . (Λ−1)
kp
ip

Λj1
l1
. . .Λ

jq
lq

T
i1...ip
j1...jq

Physicists and engineers often take this transformation law as the definition of a tensor. For us,
it is a consequence of the more fundamental definition of a tensor as an invariant multilinear
map.

6 A Glimpse of Tensor Algebra and Analysis

With tensors defined, we can perform operations on them.

• Addition: Tensors of the same type (p, q) can be added component-wise (in a given
basis). This corresponds to the standard vector space addition in T p

q (V).

• Outer Product: The tensor product can be used to combine tensors of different types.
If T ∈ T p

q (V) and S ∈ T r
s (V), their outer product T ⊗ S is a tensor of type (p+ r, q + s).

In components, this is simply:

(T ⊗ S)i1...p,k1...rj1...q,l1...s
= T i1...p

j1...q
Sk1...r
l1...s

• Contraction: This is a crucial operation that reduces the rank of a tensor. It involves
“pairing” a contravariant (upper) index with a covariant (lower) index and summing over
them. For a type (1, 1) tensor T , the contraction C(T ) is:

C(T ) = T i
i = T 1

1 + T 2
2 + · · ·+ Tn

n

This is precisely the trace of the linear operator corresponding to T . Contraction is the
component representation of applying a covector slot to a vector slot.
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Tensor Analysis (or tensor calculus) extends these ideas to manifolds (curved spaces).
Here, the vector space V becomes the tangent space at each point on the manifold. A tensor is
no longer a single object but a tensor field—a smooth assignment of a tensor to each point.
Operations like the covariant derivative are introduced to differentiate these fields in a way that
respects the geometry of the space. This is the mathematical language of General Relativity
and differential geometry.

7 Conclusion

A tensor is a fundamental mathematical object that generalizes scalars, vectors, and linear op-
erators. By defining it as a multilinear map, we capture its intrinsic, coordinate-independent
nature. This abstract viewpoint, familiar from modern linear algebra, clarifies that the compo-
nent representations and their transformation laws are consequences of this deeper structure.
Understanding tensors from this perspective provides a robust foundation for their application
in virtually every field of science and engineering, from continuum mechanics to quantum field
theory.
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