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Abstract

This article provides a comprehensive introduction to the theory of generalized functions,
more formally known as distributions. We begin by motivating the need for objects beyond
classical functions, using the Dirac delta function as a primary example. We then lay
out the rigorous mathematical framework, defining test function spaces and distributions
as continuous linear functionals. Key operations such as differentiation, multiplication,
convolution, and Fourier transform are discussed. Finally, we explore some of the most
significant applications of this theory, with a particular focus on solving partial differential
equations and its foundational role in signal and systems theory.

1 Introduction: The Need for a Broader Concept

In classical analysis, functions are typically defined by their values at each point in their domain.
However, many concepts in physics and engineering require mathematical objects that do not
fit this description. The most famous example is the Dirac delta function, denoted 6(x). It
is heuristically described by the properties:

o(x) = oo, #=0 and / d(z)dr = 1.
0, x#0 o

This object is meant to represent an idealized point mass, an instantaneous impulse, or a point
charge. From a classical function theory perspective, this definition is nonsensical. No function
can be zero everywhere except at a single point and have a non-zero integral.

To give a rigorous meaning to the Dirac delta and other similar “singular” objects, the French
mathematician Laurent Schwartz developed the theory of distributions in the 1940s. The central
idea is to shift perspective: instead of defining a function by its pointwise values, we define it
by its action on a set of well-behaved “test functions.” A generalized function is not an object
to be evaluated at a point, but rather a functional that “tests” or “samples” other functions.

2 Mathematical Foundations

The theory of distributions is built upon the concept of test functions and the dual space acting
on them.

2.1 The Space of Test Functions

A proper foundation requires a space of “nice” functions to work with. The most common choice
is the space of smooth functions with compact support.



Definition 2.1 (Space of Test Functions, D(2)). Let 2 be an open set in R™. The space of test
functions, denoted D(QY), consists of all infinitely differentiable functions ¢ : Q — C that have
compact support within Q. The support of a function, supp(p), is the closure of the set of points
where the function is non-zero.

A function has compact support if it is zero outside of some bounded set. This property is
crucial as it ensures that integrals over () are effectively over a finite domain, which allows for
integration by parts without boundary terms.

2.2 Distributions (Generalized Functions)

A distribution is defined as a continuous linear functional on the space of test functions.

Definition 2.2 (Distribution). A distribution (or generalized function) on Q is a linear func-
tional T : D(Q2) — C that is continuous. That is, for any ¢, € D(Q) and a,b € C:

1. Linearity: T(ap + b)) = aT(p) + bT ().

2. Continuity: If a sequence of test functions {¢r} converges to ¢ in D(Q2), then the sequence
of complex numbers {T(pk)} converges to T(p).

The action of a distribution T' on a test function o is often written using the dual pairing notation
(T,¢).

The convergence in D(2) is quite strong: ¢ — ¢ means that there is a fixed compact set
K C Q containing the supports of all ¢ and ¢, and for every multi-index «, the sequence of
derivatives D%py, converges uniformly to D%p on K.

2.3 Examples of Distributions

Example 2.1 (Regular Distributions). Any locally integrable function f : Q — C can be iden-
tified with a distribution Ty defined by integration:

(Ty, ) 5=/Qf(x)<p(a:)dx.

Such distributions are called regular distributions. This shows that the theory of distributions
s a generalization of classical function theory.

Example 2.2 (The Dirac Delta Distribution). The Dirac delta centered at a € ) is the distri-
bution d, defined by:
(0as ) := p(a).

This is a linear and continuous functional. It is a singular distribution because it cannot be
represented by an integral against a locally integrable function. This definition rigorously captures
the “sifting property” of the delta function. For a = 0, we write &y or simply J.

3 Operations on Distributions

The power of distribution theory lies in its ability to extend classical operations like differentia-
tion to all distributions.



3.1 Differentiation

The derivative of a distribution is defined by transferring the derivative operator onto the test
function using integration by parts.

Definition 3.1 (Derivative of a Distribution). Let T' be a distribution. Its derivative, T", is the
distribution defined by:
(T, ¢) == —(T,¢)  for all p € D(Q).

This definition is motivated by the integration by parts formula for smooth functions f:

[ r@e@ds =~ [ @) @) da

where the boundary terms vanish because ¢ has compact support. This allows us to define the
derivative of any distribution, even those corresponding to non-differentiable functions.

Example 3.1 (Derivative of the Heaviside Step Function). The Heaviside function H(z) is 1
forx >0 and 0 forx < 0. As a regular distribution Ty, its derivative is:

:—A o(x) de = ~[p(@)]y
= —(lim ¢(z) —¢(0)) = ¢(0) (since supp(p) is compact)

Since (8, ) = ¢(0), we have the remarkable result: H'(x) = §(x). The derivative of a disconti-
nuity is an impulse.

3.2 Multiplication, Convolution, and Fourier Transform

e Multiplication: A distribution 7' can be multiplied by a smooth function a(xz) € C*°(Q).
The product a7 is defined as (aT, ) := (T, ap). However, the product of two arbitrary
distributions (e.g., d(z) - 6(x)) is generally not well-defined.

e Convolution: The convolution of two distributions S and 7', (S % T), is defined if one of
them has compact support. It is given by (S * T, o) = (Sg, (T, ¢(x + y))). Convolution
with a delta function yields a translation: (7" * d,)(x) = T(x — a).

e Fourier Transform: For distributions on a different space of test functions (the Schwartz
space S(R") of rapidly decreasing functions), the Fourier transform can be defined. The
Fourier transform of a distribution 7' is denoted 7' and defined by (T, ¢) := (T, ). For
example, 5= 1, which means an impulse contains all frequencies with equal amplitude.

4 Applications

4.1 Partial Differential Equations (PDEs)

Distribution theory provides the natural framework for studying weak solutions of PDEs. A
function w is a weak solution to a linear PDE Lu = f if it satisfies the equation in the sense of
distributions, i.e., (u, L*p) = (f, ) for all test functions ¢, where L* is the formal adjoint of
the operator L.

This is particularly useful for finding fundamental solutions (or Green’s functions). A
fundamental solution E for a linear differential operator L is a solution to the equation:

LE =4.

For example, the fundamental solution of the Laplacian in R3 is E(x) = —1/(4x|x|), which is
the potential of a point charge in electrostatics.



4.2 Signal and Systems Theory

Distribution theory is the language of linear time-invariant (LTI) systems.

e The Ideal Impulse: The Dirac delta 0(¢) represents a perfect impulse signal—infinitely
short in duration, infinitely high in amplitude, with unit energy. While physically unreal-
izable, it is an essential theoretical tool.

e Impulse Response: The output of an LTI system is completely characterized by its
impulse response, h(t). This is defined as the system’s output when the input is a delta
function, x(t) = §(¢).

e Convolution: For any arbitrary input signal z(t), the output y(¢) of an LTI system is
given by the convolution of the input with the impulse response:

o
y(t) = (@ % h) () = / £(r)h(t — 1) dr.
—0o0
This fundamental formula arises directly from the sifting property of the delta function.
Any signal x(t) can be represented as a continuum of scaled and shifted impulses: z(t) =
J x(7)é(t — 7)dr. By linearity and time-invariance, the system’s response is the same
superposition of impulse responses.

e Frequency Domain Analysis: The Fourier transform is a cornerstone of signal process-
ing. The properties of distributions are essential here. As mentioned, F{d(t)} = 1. The
famous Convolution Theorem states that convolution in the time domain corresponds to
multiplication in the frequency domain:

Fa(t) « h(t)} = X (jw) - H(jw),

where X (jw) and H(jw) are the Fourier transforms of the input and the impulse response,
respectively. This simplifies system analysis immensely, turning differential equations in
the time domain into algebraic equations in the frequency domain.

5 Conclusion

The theory of generalized functions, or distributions, provides a powerful and rigorous extension
of classical calculus. By redefining functions through their action on test functions, it allows for
a consistent mathematical treatment of idealized concepts like point masses and instantaneous
impulses. Its applications are vast and transformative, providing the foundational language for
modern theories of partial differential equations, quantum field theory, and, as we have seen in
detail, signal and systems analysis. It elegantly bridges the gap between physical intuition and
mathematical rigor.
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