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Abstract

This document serves as a brief introduction to the fundamental ideas of cat-
egory theory. Assuming a solid background in linear algebra and analysis, with
some exposure to abstract algebra, we motivate the subject by observing recurring
patterns across these fields. We will see that category theory provides a powerful,
abstract language to describe not just mathematical objects, but the relationships
(structure-preserving maps) between them.

1 Why Bother? The Unifying Idea

In your studies, you've encountered a pervasive and powerful pattern:

e In Linear Algebra, we study vector spaces and the maps that preserve their
structure: linear transformations.

e In Real Analysis (or Topology), we study topological spaces and the maps that
preserve their structure: continuous functions.

e In Abstract Algebra, we study groups and the maps that preserve their structure:
group homomorphisms.

In each case, the core idea is a collection of objects and a corresponding notion of structure-
preserving maps between them. We care about linear maps precisely because they respect
vector addition and scalar multiplication. We care about continuous functions because
they respect the “nearness” of points defined by the topology.

Category theory elevates this pattern from an observation to a formal definition. It
is a “theory of everything” for mathematical structures. Its power lies in its ability to
abstract away the specifics of any one field, allowing us to prove general theorems that
apply equally to vector spaces, topological spaces, and groups, all in one go. It provides
a language to talk about relationships between entire fields of mathematics.

2 The Core Definition: Categories

The definition of a category is deceptively simple. It strips down the “objects and maps”
idea to its bare essentials.

Definition 2.1 (Category). A category C consists of:
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1. A collection of objects, denoted Ob(C).

2. For any two objects A, B € Ob(C), a collection of morphisms (or arrows) from A
to B, denoted home(A, B). If f € home(A, B), we write f : A — B.

3. For any three objects A, B,C € Ob(C), a binary operation called composition,
o : home(B, C) x home(A, B) — home (A, C)
For f: A— B and g: B — C, we write the composition as go f: A — C.
These components must satisfy two axioms:

e Associativity: For any morphisms f: A— B, g: B — C, and h: C — D, we
have ho(go f)=(hog)o f.

e Identity: For every object A, there exists an identity morphism idy : A — A
such that for any f : A — B and any g : C — A, we have f oidy = f and
idyog=g.

Remark 2.1. Crucially, the “objects” do not have to be sets, and the “morphisms” do
not have to be functions. This is a huge leap in abstraction! The axioms only care about
how morphisms compose, not what they “are”.

2.1 The Standard Examples
Your existing knowledge fits perfectly into this framework.

Example 2.1 (The Category of Sets, Set). The objects are all sets. The morphisms are
all functions between sets. Composition is the standard composition of functions. The
identity morphism on a set S is the identity function ids(x) = x.

Example 2.2 (The Category of Vector Spaces, Vecty). Let k be a field (e.g., R or C).
The objects are all vector spaces over k. The morphisms are all k-linear transformations.
Composition and identity are as usual. This is the universe of linear algebra.

Example 2.3 (The Category of Groups, Grp). The objects are all groups. The mor-
phisms are all group homomorphisms.

Example 2.4 (The Category of Topological Spaces, Top). The objects are all topological
spaces. The morphisms are all continuous functions.

2.2 A Non-Standard Example: A Poset as a Category
To break the intuition that objects must be sets with structure, consider this:

Example 2.5 (A Poset as a Category). Let (P, <) be a partially ordered set (poset). We
can define a category Cp as follows:

e The objects are the elements of P.

e For two objects x,y € P, there is a morphism from x to y if and only if x <y. We
can be spartan and say that hom(x,y) contains a single, unique arrow if x <y, and
1s empty otherwise.



e Composition is guaranteed by transitivity: if there is an arrow f : x — y (sox <y)
and an arrow g 1y — z (soy < z), then x < z, so there is an arrow h : v — z. We
define go f = h.

o The identity axiom s guaranteed by reflexivity: for any v € P, v < x, so there is
an tdentity arrow id, : v — .

Here, the morphisms are just formal markers of a relation. They don’t “do” anything.

3 Functors: The Morphisms of Categories

If categories are our new “objects,” what are the structure-preserving maps between
them? These are called functors. A functor is a map from one category to another that
respects their structure (composition and identities).

Definition 3.1 (Functor). Let C and D be two categories. A functor F' :C — D is a
map that:

1. Assigns to each object C' € Ob(C) an object F'(C) € Ob(D).

2. Assigns to each morphism f: A — B in C a morphism F(f) : F(A) — F(B) in D.
such that:

o ['(idy) = idpa) for every object A € C. (Preserves identities)

e F(go f) = F(g) o F(f) for all morphisms f : A — B and g : B — C in C.

(Preserves composition)

Example 3.1 (Forgetful Functors). These are the simplest, most intuitive functors. They
“forget” structure.

e The functor U : Vect, — Set takes a vector space V' and maps it to its underlying
set of vectors, U(V'). It takes a linear map T : V' — W and maps it to the underlying
function between the sets, U(T). It simply forgets the vector space azioms.

o Similarly, there are forgetful functors U : Grp — Set and U : Top — Set.

Example 3.2 (The Fundamental Group Functor m). This is a star example of why
category theory matters. It formally connects two different worlds of mathematics. The
fundamental group functor, w, maps the category of “pointed” topological spaces to the
category of groups.

m : Top, — Grp

It takes a pointed topological space (X, xo) and assigns to it its fundamental group m (X, zo),
which is an object in Grp. It takes a continuous map f : (X, x9) — (Y,y0) and assigns
to it the induced group homomorphism f. : m(X,zo) — m(Y,v0). Functors like this
are bridges between fields—in this case, from topology to algebra. They allow us to use
algebraic tools (like group theory) to solve topological problems (like telling spaces apart).



4 Universal Properties: The “Why” of Construc-
tions

This is arguably the most important conceptual contribution of category theory to every-
day mathematics. Instead of defining an object by what it is (e.g., a set of ordered pairs),
we define it by how it relates to everything else. This is called a universal property.

Let’s take an example you know well: the direct product. You've seen the direct
product of sets (Cartesian product), vector spaces (direct sum/product), and groups.
They all feel the same. Category theory makes this “sameness” precise.

Definition 4.1 (Categorical Product). Let A and B be two objects in a category C. A
product of A and B is an object P together with two morphisms mq : P — A and
g : P — B (called projections) that satisfy the following universal property:

For any other object X with morphisms f : X — A and g : X — B, there exists a
unique morphism u : X — P such that the following diagram commutes (i.e., f = Ta0ou
and g =7mpou).

X
/ iu'&
A < P s B
TA B

The ‘i on the dashed arrow signifies uniqueness.
Let’s see how this plays out:

e In Set, the product of sets A and B is the Cartesian product A x B. The projections
are ma(a,b) = a and wg(a,b) = b. For any set X with functions f : X — A and
g : X — B, the unique map u : X — A x B is given by u(z) = (f(z), g(z)). You
can check that this is the only function that works.

e In Vecty, the product of vector spaces V and W is the direct product V' x W (often
written V' & W) with component-wise operations. The projections 7y and 7y are
linear maps. The universal property guarantees that if you have two linear maps
f:X —>Vandg: X — W, the combined map u(z) = (f(x),g(x)) is also linear
and is unique.

The beauty of this is that we have defined “product” in a way that works across many
different categories, without ever looking “inside” the objects. All that matters is the
diagram of arrows. This approach allows us to define constructions like quotients, free
objects, limits, and colimits in a unified way. The universal property is the definition.

5 So, Why Does It Matter?

At your level, category theory provides three main things:

1. A Unifying Language: It gives you a precise way to state that the “direct prod-
uct” in linear algebra is “the same kind of thing” as the “Cartesian product” in set

theory. It reveals the deep structural similarities between different mathematical
fields.



2. Powerful Definitions: Universal properties are often the “right” way to define
a concept. They capture the essential role of an object, rather than its specific
construction. This leads to cleaner proofs and a better understanding of why things
work the way they do.

3. A Roadmap for New Mathematics: When you encounter a new type of math-
ematical object, you can immediately ask: What are the morphisms? Does this
collection form a category? Does it have products? Quotients? Functors from this
category to another can reveal profound connections. This framework is a powerful
guide for exploration.

Category theory is not just another branch of mathematics; it is a way of thinking
about mathematics itself. By focusing on objects and the relationships between them, it
provides a bird’s-eye view of the entire mathematical landscape.

5.1 What’s Next?

If this has piqued your interest, the next fundamental concepts to explore are:

e Natural Transformations: These are “morphisms between functors.” This three-
layered structure (objects, morphisms; functors, natural transformations) is central
to the field.

e Adjoint Functors: Many important constructions in mathematics come in pairs,
like “free object” and “forgetful” functors. Adjoints formalize this deep and useful
duality.

e The Yoneda Lemma: Often cited as the most important result in category theory,
it is a profound statement about how an object is completely determined by its
relationships to all other objects in the category.

Welcome to a more abstract, and ultimately more unified, way of seeing the mathe-
matical world.
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