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Why do we use the Kullback-Leibler (KL) divergence as a measure of distance between
probability distributions? Why do we use the cross-entropy loss function in supervised machine
learning?
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1 Introduction
In supervised learning, we typically assume that the training set D = {(x(i), y(i))}Ni=1 is sampled
from an underlying true distribution p, and our goal is to construct a model qθ, parameterized by
θ, that approximates this distribution. To evaluate our model, we need a measure of distance, or
dissimilarity, between two probability distributions. A standard choice is the Kullback-Leibler
(KL) divergence

DKL(p ∥ q) = Ex∼p

[
log

p(x)

q(x)

]
=
∑
x∈X

p(x) log
p(x)

q(x)

(or
∫
p(x) log p(x)

q(x)dx for continuous random variables). In practice, we often use the cross-entropy
loss1

J(θ) = − 1

N

N∑
i=1

log qθ(x
(i), y(i)).

But why do they work? The definitions above are not quite self-explanatory — it is not
immediately clear from their forms why the KL divergence measures the distance between two
distributions, or why minimizing the cross-entropy loss leads to better model performance. To
answer this, we begin with the notion of surprisal.

2 Surprisal
Consider a random variable X with a discrete probability distribution p(x). If we observe
an outcome x, how surprised are we? Intuitively, the higher the probability of an event, the
less surprised we are, and correspondingly the less information we gain from its occurrence.
Conversely, events with low probability are more surprising and provide more information. This
motivates the definition of information content, or self-information, or surprisal, of an event.

Definition 1. The information content, self-information, or surprisal of an event x is defined
as

I(x) = − log p(x).

Here the choice of base b is somewhat arbitrary. Different choices of b correspond to different
units of information: bit for b = 2, nat (for natural) for b = e, and Hart (for hartley) for b = 10.

In this article, we shall primarily be treating the concept above as surprisal, instead of the
less intuitive notion of information content. The latter notion is also important and will be
treated in 5.

The surprisal has some intuitive and desirable properties.
• I(x) = 0 for x with p(x) = 1. We are completely unsurprised at events with probability 1.

Such events carry no information.
• I(x) is a monotonically decreasing function of p(x).
• For independent events x and y, I(x, y) = I(x)I(y). The information content of two

independent events is the sum of their individual self-information; the surprisal of two
independent events is the sum of their individual surprisals.

1The cross-entropy loss has the same form as the maximum likelihood estimation objective.
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3 Entropy and Cross-Entropy
3.1 Entropy
Definition 2. The (Shannon) entropy of a random variable X, denoted H(p), is defined as the
average surprisal we experience when drawing samples from it.

H(p) = Ex∼p[I(x)] = −
∑
x∈X

p(x) log p(x)

(or −
∫
p log p for continuous distributions, called the differential entropy2).

Entropy measures the uncertainty inherent in a distribution. Indeed, the greater the entropy,
the more surprisal we will experience (in terms of expectation) when sampling from it. Next we
discuss what distributions extremize the entropy.

Discrete case, minimum Observe that the entropy is always nonnegative. Hence when the
probability mass is concentrated at a single point, the entropy attains its minimum, 0.

Discrete case, maximum We use Lagrange multipliers. Without loss of generality, suppose
that X = {1, 2, . . . , n}. Let y = (y1, . . . , yn) = (p(1), . . . , p(n)). The Lagrangian

L(y, λ) = −
n∑

i=1

yi log yi + λ

(
n∑

i=1

yi − 1

)
.

The only stationary point is y1 = · · · = yn, and the Hessian of the Lagrangian here is negative
definite. Hence a uniform distribution maximizes the entropy (maximum log n).

Continuous case, minimum When X ∼ U(a, b), H(p) = log(b − a). Hence H(p) → −∞
when b− a → 0. There is no minimum.

Continuous case, maximum Suppose that the PDF f(x) = 0 when x ̸∈ [a, b]. Similar to
the proof of the discrete case, variational calculus (the Euler-Lagrange equation) leads to that
a uniform distribution maximizes the (differential) entropy. Here we give a cleaner proof using
the nonnegativity of the KL divergence (see 4.2).

Let u be the PDF of U(a, b).

0 ≤ DKL(f ∥ u) =

∫ b

a
f log f −

∫ b

a
f log u = −H(f) + log(b− a).

Hence H(f) ≤ log(b− a). Equality holds if and only if f = u a.e.3

3.2 Cross-Entropy
In the context of machine learning, we often approximate an unknown, underlying true distribu-
tion p with a model q. Suppose we again want to measure the expected surprisal when sampling
from the distribution. Samples are still drawn from the black box p, but this time we can only
measure surprisal with our known, approximating distribution q.

Definition 3. The cross-entropy, denoted H(p, q), is the average surprisal experienced when
samples are drawn from p, but surprisal is measured via q.

H(p, q) = Ex∼p[− log q(x)] = −
∑
x∈X

p(x) log q(x).

2In what follows, the definitions for continuous random variables apply mutatis mutandis.
3a.e. stands for almost everywhere.
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4 Kullback-Leibler Divergence
4.1 Motivation and Definition
How much extra surprisal do we get by using our incorrect model q instead of the truth p?
Definition 4. The Kullback-Leibler (KL) divergence from q to p, denoted DKL(p ∥ q), is the
difference between the cross-entropy and the entropy.

DKL(p ∥ q) = H(p, q)−H(p) =
∑
x∈X

p(x) log
p(x)

q(x)
.

4.2 Properties
Theorem 5. DKL(p ∥ q) ≥ 0. Equality holds if and only if p = q a.e.
Proof. We prove the discrete case using Jensen’s inequality; the continuous case holds mutatis
mutandis. Notice that p(x) ≥ 0 and

∑
x∈X p(x) = 1. Because log is concave, by Jensen’s

inequality
DKL(p ∥ q) = −

∑
x∈X

p(x) log
q(x)

p(x)
≥ − log

∑
x∈X

p(x)
q(x)

p(x)
= 0.

The condition for equality follows from that of Jensen’s inequality.

Corollary 6. H(p, q) ≥ H(p) = H(p, p).
Measuring surprisal using the true distribution yields least average surprisal. Any incorrect

surprisal-measuring scheme incurs extra surprisal.
The KL divergence is asymmetric: DKL(p ∥ q) ̸= DKL(q ∥ p) generally.

5 An Information-Theoretic Perspective
The KL divergence quantifies the “inefficiency” in using distribution q to represent the truth
p. Suppose we want to design a (binary) code (like Morse code or Huffman code) to transmit
outcomes of a discrete random variable X ∼ p(x). To be efficient, we should assign shorter
codewords to more probable outcomes and longer codewords to less probable ones.

Shannon’s source coding theorem implies that the theoretically optimal length of a codeword
representing an outcome x is − log p(x). In this subsection we use 2 as the base of the logarithm
because we are constructing a binary code.

The optimal scenario Suppose we know the true distribution p and hence use it to construct
the code. The expected length of a codeword is then

Ex∼p[− log p(x)] = H(p).

The suboptimal scenario Now suppose we only have an approximating distribution q, and
construct our code based on this false belief. The length of the codeword assigned to an outcome
x would then be − log q(x). The expected length of a codeword is therefore

Ex∼p[− log q(x)] = H(p, q).

We see that the entropy is the average number of bits required per message when using the
most efficient code, and the cross-entropy is the average number of bits required per message
when using an inefficient, suboptimal code based on the wrong distribution q. Therefore, the
KL divergence DKL(p ∥ q) = H(p, q)−H(p) ≥ 0 is the average number of extra bits required per
message due to using the wrong distribution to optimize the code. This justifies the statement
that the KL divergence quantifies the inefficiency in using distribution q to represent p.
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6 The Machine Learning Perspective
Now the answers to the questions raised in 1 are clear.

(1) Why do we use the KL divergence as a measure of distance between distributions?
The answer is clear from 4 and 5.

(2) Why do we use the cross-entropy as the loss function in machine learning (classification
problems in particular)?
To measure the dissimilarity between the data’s underlying distribution p and our model
qθ, we use the KL divergence. Minimizing DKL(p ∥ qθ) = H(p, qθ) − H(p) is equivalent to
minimizing H(p, qθ) because p does not depend on θ.
One might further ask that the cross-entropy H(p, qθ) = −

∑
x∈X p(x) log qθ(x) looks dif-

ferent from the actual loss function we see in ML textbooks, and that how can we possibly
calculate it without knowing the true distribution p(x)? The answer is we use the empir-
ical distribution D̂, i.e., the uniform distribution over the training set {(x(i), y(i))}Ni=1, to
approximate p. The cross-entropy (loss)

J(θ) = H(D̂, qθ) = −
N∑
i=1

1

N
log qθ(x

(i), y(i)).

This is the form familiar to us for long.

5


	Introduction
	Surprisal
	Entropy and Cross-Entropy
	Entropy
	Cross-Entropy

	Kullback-Leibler Divergence
	Motivation and Definition
	Properties

	An Information-Theoretic Perspective
	The Machine Learning Perspective

